Pressure relief valve, direct operated

RE 25402

Type DBD
Edition: 2016-07
Replaces: 2014-08

- Size 6 ... 30
- Component series 1X
- Maximum operating pressure 630bar [9150 psi]
- Maximum flow 330 I/min [87 US gpm]

Features

- As screw-in cartridge valve (cartridge)
- For threaded connection
- For subplate mounting
- Adjustment types for pressure adjustment, optionally:
- Bushing with hexagon and protective cap
- Rotary knob
- Hand wheel
- Lockable rotary knob

Contents

Features 1
Ordering code 2, 3
Function, section, symbol 3
Technical data 4
Characteristic curves 5
Dimensions 6 ... 10
Type-examination tested safety valves type DBD...E according to Pressure Equipment Directive 2014/68/EU(in the following shortly PED)Ordering code11
Deviating technical data 12
Dimensions 12
Deviating dimensions 13
Characteristic curves 14
Safety instructions 15
Characteristic curves 15 ... 19
Further information 20

Ordering code

01	02	03	04	0	06	07	08	09	10	
DBD				$\mathbf{1 X}$	$\boldsymbol{/}$					${ }^{\prime}$

01	Pressure relief valve, direct operated	DBD

Adjustment type for pressure adjustment

02		NG6	NG8	NG10	NG15	NG20	NG25	NG30	
	Bushing with hexagon and protective cap	\checkmark	S						
	Rotary knob ${ }^{1)}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	H
	Hand wheel ${ }^{2)}$	-	-	-	-	-	\checkmark	\checkmark	H
	Lockable rotary knob $1 ; 3 ; 4$)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	A
03	Size 6 (port G1/4)								6
	Size 8 (port G3/8)								8
	Size 10 (port G1/2)								10
	Size 15 (port G3/4)								15
	Size 20 (port G1)								20
	Size 25 (port G1 1/4)								25
	Size 30 (port G1 1/2)								30

Type of connection

04		NG6	NG8	NG10	NG15	NG20	NG25	NG30	
	As screw-in cartridge valve (cartridge)	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	K
	For threaded connection ${ }^{\text {5 }}$	\checkmark	G						
	For subplate mounting	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	P
05	Component series $10 \ldots 1 Z$ (10 ... 1Z: unchanged installation and connection dimensions)								1X

Pressure rating ${ }^{6)}$

06		NG6	NG8	NG10	NG15	NG20	NG25	NG30	
	Set pressure up to 25 bar [362 psi]	\checkmark	25						
	Set pressure up to 50 bar [725 psi]	\checkmark	50						
	Set pressure up to 100 bar [1450 psi]	\checkmark	100						
	Set pressure up to 200 bar [2900 psi]	\checkmark	200						
	Set pressure up to 315 bar [4568 psi]	\checkmark	315						
	Set pressure up to 400 bar [5800 psi]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	400
	Set pressure up to 630 bar [9150 psi] 7)	-	-	\checkmark	-	-	-	-	630

Seal material

07	NBR seals	no code
	FKM seals	V
	Observe compatibility of seals with hydraulic fluid used! (Other seals upon request)	

Line connection

08	Pipe thread according to ISO 228/1	no code
	SAE thread	$\mathbf{1 2}$

Equipment Directive

09	Without type-examination procedure	no code
	Type-examination tested safety valve according to PED 2014/68/EU 8)	E
10	For further information, see the plain text	

Explanation of the footnotes see page 3 .

Notice: Preferred types and standard units are contained in the EPS (standard price list).

Ordering code

1) With size 20, only available for the pressure ratings 25,50 or 100 bar.
2) Only available for the pressure ratings 25,50 or 100 bar.
3) Key with material no. R900008158 is included in the scope of delivery.
4) Not available for type-examination tested safety valves.
5) Not available for type-examination tested safety valves of size 8, 15 and 25.
6) When selecting the pressure rating, please observe the characteristic curves and notes on page 5 .
7) With version "G" and "P", only available as "SO292", see page 6 and 9.
8) See ordering code on page 11.

Function, section, symbol

Pressure relief valves of type DBD are direct operated seat valves. They are used for limiting a system pressure.
The valves basically consist of sleeve (1), spring (2), poppet with damping piston (3) (pressure rating 25 ... 400 bar) or ball (4) (pressure rating 630 bar) and adjustment type (5). The system pressure can be set steplessly via the adjustment type (5). The spring (2) pushes the poppet (3) or the ball (4) onto the seat. Channel P is connected to the system. The pressure existing in the system acts on the poppet surface (or the ball).

If the pressure in channel P exceeds the value set at the spring (2), the poppet (3) or the ball (4) opens against the spring (2). Now, hydraulic fluid from channel P flows into channel T. The stroke of the poppet (3) is limited by the embossing (6).
In order to achieve good pressure adjustment over the entire pressure range, the entire pressure range has been divided into 7 pressure ratings. One pressure rating corresponds to a certain spring for a maximum operating pressure that can be set by means of that spring.

Symbol

Type DBDS..K1X/...
Version pressure rating 25 ... 400 bar (poppet seat valve)

Type DBDH 10 K1X/...
Version pressure rating 630 bar (ball seat valve, only NG10)

[居 Notes:

- The adjustment type (5) is constructed so that it cannot be lost. Due to the gimbalmounting, the adjustment element remains loose (movable) in the adjustment type (5) in case of complete unloading.
- Pressure rating "25": If despite completely unloaded adjustment type, the minimum pressure does not settle, the adjustment element has to be "pulled back" to the stop due to the low spring and/or restoring force.
- For pressure adjustment / increase, the adjustment element can then be screwed in again.

Technical data

(For applications outside these parameters, please consult us!)

general				
Size ${ }^{\text {a }}$ NG	6, 8	10	15, 20	25, 30
Weight	See pages 6, 8 and 10			
Installation position	Any			
Ambient temperature range ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	$\begin{aligned} & -30 \ldots+80[-22 \ldots+176] \text { (NBR seals) } \\ & -15 \ldots+80[5 \ldots 176] \text { (FKM seals) } \\ & \hline \end{aligned}$			
Minimum stability of the housing materials	Housing materials are to be selected so that there is sufficient safety for all imaginable operating conditions (e.g. with regard to pressure resistance, thread stripping strengths and tightening torques).			
hydraulic				
Maximum operating pressure - Input bar [psi]	400 [5800]	630 [9150]	400 [5800]	315 [4568]
- Output bar [psi]	315 [4568]	315 [4568]	315 [4568]	315 [4568]
Maximum flow (standard valves)	See characteristic curves page 5			
Hydraulic fluid	See table below			
Hydraulic fluid temperature range ${ }^{\circ} \mathrm{C}$ [${ }^{\circ} \mathrm{F}$]	$\begin{array}{\|l\|} \hline-30 \ldots+80[-22 \ldots+176] \text { (NBR seals) } \\ -15 \ldots+80[5 \ldots 176] \text { (FKM seals) } \\ \hline \end{array}$			
Viscosity range $\mathrm{mm}^{2} / \mathrm{s}$ [SUS]	10 ... 800 [60 ... 3710]			
Maximum admissible degree of contamination of the hydraulic fluid; Cleanliness class according to ISO 4406 (c)	Class 20/18/15 ${ }^{1)}$			

Hydraulic fluid	Classification	Suitable sealing materials	Standards	Data sheet	
Mineral oils		HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220
Bio-degradable		Insoluble in water	HETG	FKM	ISO 15380
		HEES	FKM	FKM	ISO 15380

居 Important notes on hydraulic fluids:

- For more information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us.
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.).
- The ignition temperature of the hydraulic fluid used must be 50 K higher than the maximum solenoid surface temperature.

1) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and simultaneously increases the life cycle of the components.
For the selection of the filters, see www.boschrexroth.com/filter.
Deviating technical data for type-examination tested safety valves can be found on page 12.

- Bio-degradable and flame-resistant: If this hydraulic fluid is used, small amounts of dissolved zinc may get into the hydraulic system.

Notice:

Hydraulic counter pressures in port T add 1:1 to the response pressure of the valve set at the adjustment type.

Example:

- Pressure adjustment of the valve due to spring preload (item 2 on page 3) $\boldsymbol{p}_{\text {spring }}=\mathbf{2 0 0}$ bar
- Hydraulic counter pressure in port T: $\boldsymbol{p}_{\text {hydraulic }}=\mathbf{5 0} \mathbf{~ b a r}$
$\bullet \Rightarrow$ Response pressure $=\boldsymbol{p}_{\text {spring }}+\boldsymbol{p}_{\text {hydraulic }}=\mathbf{2 5 0}$ bar

Characteristic curves
(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}\left[104 \pm 9^{\circ} \mathrm{F}\right]$)

Size 6

Flow in I/min [US gpm] \rightarrow

1 = minimum adjustable pressure

Size 15 and 20

Flow in I/min [US gpm] \rightarrow

园 Notes:

- The characteristic curves apply to the pressure at the valve output $\boldsymbol{p}=0$ bar across the entire flow range.
- The characteristic curves only apply with the specified environmental and temperature conditions. It has to be noted that the development of the characteristic curve will be influenced in case of deviating boundary conditions.

Size 8 and 10

Flow in I/min [US gpm] \rightarrow
pressure rating 630 bar [9150 psi] (only NG10)

Size 25 and 30

Flow in I/min [US gpm] \rightarrow

- The characteristic curves refer to the specified pressure ratings (e.g. 200 bar). The more the set pressure value differs from the nominal pressure rating (e.g. < 200 bar), the larger the pressure increase with increasing flow gets.

Dimensions: Threaded connection
(dimensions in mm [inch])

NG	B1	B2	ØD1	D2	ØD3	D4	Tightening torques $\boldsymbol{M}_{\mathrm{A}}$ in Nm [ft-lbs] for fittings ${ }^{1)}$	
							Plug screw (4)	Pipe fittings
6	45 [1.77]	60 [2.36]	25 [0.98]	M6	6.6 [0.26]	G1/4	30 [22]	60 [44]
8	60 [2.36]	80 [3.15]	28 [1.10]	M8	9 [0.35]	G3/8	40 [29]	90 [66]
10	60 [2.36]	80 [3.15]	34 [1.34]	M8	9 [0.35]	G1/2	60 [44]	130 [95]
15	70 [2.76]	100 [3.94]	42 [1.65]	M8	9 [0.35]	G3/4	80 [59]	200 [147]
20	70 [2.76]	100 [3.94]	47 [1.85]	M8	9 [0.35]	G1	135 [99]	380 [280]
25	100 [3.94]	130 [5.12]	56 [2.21]	M10	11 [0.43]	G1 1/4	480 [354]	500 [368]
30	100 [3.94]	130 [5.12]	65 [2.56]	M10	11 [0.43]	G1 1/2	560 [413]	600 [442]

$\mathbf{N G}$	$\mathbf{H 1}$	$\mathbf{H 2}$	$\mathbf{L 1}$	$\mathbf{L 2}$	$\mathbf{L 3}$	$\mathbf{L 4}$	$\mathbf{L 5}$	$\mathbf{L 6}$	$\mathbf{T 1}$	T2	Weight, approx. in kg $[\mathrm{lbs}]$
$\mathbf{6}$	$25[0.98]$	$40[1.57]$	$80[3.15]$	$4[0.16]$	$15[0.59]$	$55[2.17]$	$40[1.57]$	$20[0.79]$	$10[0.39]$	$12[0.47]$	$1.5[3.3]$
$\mathbf{8}$	$40[1.57]$	$60[2.36]$	$100[3.94]$	$4[0.16]$	$20[0.79]$	$70[2.76]$	$48[1.89]$	$21[0.83]$	$15[0.59]$	$12[0.47]$	$3.7[8.2]$
$\mathbf{1 0}$	$40[1.57]$	$60[2.36]$	$100[3.94]$	$4[0.16]$	$20[0.79]$	$70[2.76]$	$48[1.89]$	$21[0.83]$	$15[0.59]$	$14[0.55]$	$3.7[8.2]$
$\mathbf{1 5}$	$50[1.97]$	$70[2.76]$	$135[5.32]$	$4[0.16]$	$20[0.79]$	$100[3.94]$	$65[2.56]$	$34[1.34]$	$18[0.71]$	$16[0.63]$	$6.4[14.1]$
$\mathbf{2 0}$	$50[1.97]$	$70[2.76]$	$135[5.32]$	$5.5[0.22]$	$20[0.79]$	$100[3.94]$	$65[2.56]$	$34[1.34]$	$18[0.71]$	$18[0.71]$	$6.4[14.1]$
$\mathbf{2 5}$	$60[2.36]$	$90[3.54]$	$180[7.09]$	$5.5[0.22]$	$25[0.98]$	$130[5.12]$	$85[3.35]$	$35[1.38]$	$20[0.79]$	$20[0.79]$	$13.9[30.6]$
$\mathbf{3 0}$	$60[2.36]$	$90[3.54]$	$180[7.09]$	$5.5[0.22]$	$25[0.98]$	$130[5.12]$	$85[3.35]$	$35[1.38]$	$20[0.79]$	$22[0.87]$	$13.9[30.6]$

[^0]Dimensions: Screw-in cartridge valve
(dimensions in mm [inch])

1) Maximum dimension
2) All seal ring insertion faces are rounded and free of burrs Tolerance for all angles $\pm 0.5^{\circ}$

Dimensional tables and item explanations see page 8.

Dimensions: Screw-in cartridge valve

(dimensions in mm [inch])

Screw-in cartridge valve

$\mathbf{N G}$	$\boldsymbol{\varnothing D 1 1}$	$\boldsymbol{\text { ØD12 }}$	$\boldsymbol{\varnothing D 1 3}$	$\mathbf{L 1 7}$	$\mathbf{L 1 8}$	$\mathbf{L 1 9}$	$\mathbf{L 2 0}$	$\mathbf{L 2 1}$	$\mathbf{L 2 2}$	L23	L24
$\mathbf{6}$	$34[1.34]$	$60[2.36]$	-	$72[2.83]$	$11[0.43]$	$83[3.26]$	$28[1.10]$	$20[0.79]$	-	-	$64.5[2.54]$
$\mathbf{1 0}$	$38[1.50]$	$60[2.36]$	-	$68[2.68]$	$11[0.43]$	$79[3.11]$	$28[1.10]$	$20[0.79]$	-	-	$77[3.03]$
$\mathbf{2 0}$	$48[1.89]$	$60[2.36]$	-	$65[2.56]$	$11[0.43]$	$77[3.03]$	$28[1.10]$	$20[0.79]$	-	-	$106[4.17]$
$\mathbf{3 0}$	$63[2.48]$	-	$80[3.15]$	$83[3.26]$	-	-	-	-	$11[0.43]$	$56[2.21]$	$131[5.16]$

NG	SW1	SW2	SW3	SW4	SW5	SW6	Tightening torques $\boldsymbol{M}_{\mathrm{A}}$ in Nm [ft-lbs] for screw-in cartridge valves ${ }^{2)}$ Pressure rating in bar [psi]			Weight, approx. in kg [lbs]
							up to 200 [2900]	up to 400 [5800]	up to 630 [9150]	
6	32	30	19	6	-	30	50 ± 5 [37 $\pm 3.7]$	80 ± 5 [59 4]	-	0.4 [0.88]
10	36	30	19	6	-	30	100 5 [74 3.5]	150 ± 10 [110 3.5]	200 ± 10 [148 $\pm 7.5]$	0.5 [1.10]
20	46	36	19	6	-	30	150 ± 10 [111 $\pm 7.5]$	300 ± 15 [221土11]	-	1 [2.21]
30	60	46	19	-	13	-	350 ± 20 [258 ± 19.5]	500 ± 30 [369 22]	-	2.2 [4.85]

2) The tightening torques are guidelines with a friction coefficient $\boldsymbol{\mu}_{\text {total }}=0.12$ and when using a manual torque wrench.

Mounting cavity

1.1 Adjustment type "S" - Grub screw with hexagon and protective cap; internal hexagon (NG6 ... NG20), external hexagon (NG30)
1.2 Adjustment type "H" - rotary knob (NG6 ... NG20), hand wheel (NG30)
1.3 Adjustment type "A" - lockable rotary knob NG6 ... NG10 (NG20 up to 100 bar [1450 psi])
4 Port P, at any place at the circumference or at the front side
5 Port T , at any place at the circumference
6 Type designation
7 Pressure rating (stamped in)

Huade Hydraulic, RE 25402, edition: 2016-07

Dimensions: Subplate mounting
(dimensions in mm [inch])

1.1 Adjustment type "S" (example)

Grub screw with hexagon and protective cap; internal hexagon (NG6 ... NG20), external hexagon (NG30)
2 Name plate
34 valve mounting bores
4 Additional port (P), optional (e.g. for pressure measurement); not possible for NG10 and pressure rating > 400 bar (= version "SO292"). Tightening torques see dimensional table on page 6)
12 Subplate (type designation see table on page 10)
13 Valve contact surface
14 Front panel break-through
15 Locking pin (only with type-examination tested safety valves)

For reasons of stability, exclusively the following valve mounting screws may be used (separate order):
4 hexagon socket head cap screws ISO 4762 - flZn-240h-L ${ }^{1)}$
(friction coefficient $\mu_{\text {total }}=0.09 \ldots 0.14$)

NG	Dimension	Property class	$\boldsymbol{M}_{\mathrm{A}}$ in Nm $[f t-\mathrm{lbs}] 2)$	Material number
$\mathbf{6}$	$\mathrm{M} 6 \times 50$	10.9	$12.5[9.2]$	R 913000151
$\mathbf{1 0}$	$\mathrm{M} 8 \times 70$	10.9	$28[20.7]$	R 913000149
$\mathbf{2 0}$	$\mathrm{M} 8 \times 90$	12.9	$28[20.7]$	R 913000150
$\mathbf{3 0}$	$\mathrm{M} 10 \times 110$	12.9	$56[41.3]$	R 913000148

4 hexagon socket head cap screws UNC upon request

[^1]For the versions and dimensions of the adjustment types refer to page 7 and 8.

Dimensions: Subplate mounting

(dimensions in mm [inch])

Pressure relief valve

NG	B1	B2	ØD3	H2	L1	L2	L3
6	45 [1.77]	60 [2.36]	6.6 [0.26]	40 [1.57]	80 [3.15]	4 [0.16]	15 [0.59]
10	60 [2.36]	80 [3.15]	9 [0.35]	60 [2.36]	100 [3.94]	4 [0.16]	20 [0.79]
20	70 [2.76]	100 [3.94]	9 [0.35]	70 [2.76]	135 [5.32]	5.5 [0.22]	20 [0.79]
30	100 [3.94]	130 [5.12]	11 [0.43]	90 [3.54]	180 [7.09]	5.5 [0.22]	25 [0.98]
NG	L4	L5	L6	L18	Port P	Weight, approx. in kg [lbs]	
6	55 [2.17]	40 [1.57]	20 [0.79]	15 [0.59]	G1/4	1.5 [3.3]	
10	70 [2.76]	45 [1.77]	21 [0.83]	15 [0.59]	G1/2	3.7 [8.2]	
20	100 [3.94]	65 [2.56]	34 [1.34]	15 [0.59]	G3/4	6.4 [14.1]	
30	130 [5.12]	85 [3.35]	35 [1.37]	15 [0.59]	G1 1/4	13.9 [30.6]	

Subplates

NG	Type	B3	B4	ØD5	ØD6	D7	ØD8	D9
6	G300/01 [G300/12]	45 [1.77]	60 [2.36]	6.6 [0.26]	11 [0.43]	M6 [1/4-20 UNC]	25 [0.98]	G1/4 [SAE 4; 7/16-20]
10	G661//01	60 [2.36]	80 [3.15]	6.6 [0.26]	11 [0.43]	M8	25 [0.98]	G3/8
	G662/01	60 [2.36]	80 [3.15]	6.6 [0.26]	11 [0.43]	M8	34 [1.34]	G1/2
20	G303/01	70 [2.76]	100 [3.94]	11 [0.43]	18 [0.71]	M8	42 [1.65]	G3/4
	G304/01	70 [2.76]	100 [3.94]	11 [0.43]	18 [0.71]	M8	47 [1.85]	G1
30	G305/01	100 [3.94]	130 [5.12]	11 [0.43]	18 [0.71]	M10	56 [2.20]	G1 1/4
	G306/01	100 [3.94]	130 [5.12]	11 [0.43]	18 [0.71]	M10	65 [2.56]	G1 1/2

NG	ØD10	ØD11	H3	L7	L8	L9	L10	L11	L12
6	6 [0.24]	8 [0.32]	25 [0.98]	110 [4.33]	8 [0.32]	94 [3.70]	22 [0.87]	55 [2.17]	10 [0.39]
10	10 [0.39]	8 [0.32]	25 [0.98]	135 [5.32]	10 [0.39]	115 [4.53]	27.5 [1.08]	70 [2.76]	12.5 [0.49]
	10 [0.39]	8 [0.32]	25 [0.98]	135 [5.32]	10 [0.39]	115 [4.53]	27.5 [1.08]	70 [2.76]	12.5 [0.49]
20	15 [0.59]	8 [0.32]	40 [1.57]	170 [6.69]	15 [0.59]	140 [5.51]	20 [0.79]	100 [3.94]	20 [0.79]
	20 [0.79]	8 [0.32]	40 [1.57]	170 [6.69]	15 [0.59]	140 [5.51]	20 [0.79]	100 [3.94]	20 [0.79]
30	30 [1.18]	8 [0.32]	40 [1.57]	190 [7.48]	12.5 [0.49]	165 [6.50]	17.5 [0.67]	130 [5.12]	22.5 [0.89]

NG	L13	L14	L15	L16	L17	T2	T3	T4	T5
6	39 [1.54]	42 [1.65]	62 [2.44]	65 [2.56]	15 [0.59]	1 [0.039]	15 [0.59]	9 [0.35]	15 [0.59]
10	40.5 [1.59]	48.5 [1.91]	72.5 [2.85]	80.5 [3.17]	15 [0.59]	1 [0.039]	15 [0.59]	9 [0.35]	12 [0.47]
	40.5 [1.59]	48.5 [1.91]	72.5 [2.85]	80.5 [3.17]	15 [0.59]	1 [0.039]	16 [0.63]	9 [0.35]	15 [0.59]
20	45 [1.77]	54 [2.13]	85 [3.35]	94 [3.70]	15 [0.59]	1 [0.039]	20 [0.79]	13 [0.51]	22 [0.87]
	42 [1.65]	54 [2.13]	85 [3.35]	97 [3.82]	15 [0.59]	1 [0.039]	20 [0.79]	13 [0.51]	22 [0.87]
30	42 [1.65]	52.5 [2.07]	102.5 [4.04]	113 [4.45]	15 [0.59]	1 [0.039]	24 [0.95]	11.5 [0.45]	22 [0.87]

NG	T6	R1	Weight, approx. in kg [lbs]
$\mathbf{6}$	$6[0.24]$	$25^{+2}\left[0.98^{+0.079}\right]$	$1.5[3.3]$
$\mathbf{1 0}$	$6[0.24]$	$30^{+5}\left[1.18^{+0.197}\right]$	$2[4.4]$
$\mathbf{2 0}$	$6[0.24]$	$40^{+3}\left[1.57^{+0.118}\right]$	$5.5[12.1]$
$\mathbf{3 0}$	$6[0.24]$	$55^{+4}\left[2.16^{+0.157}\right]$	$8[17.6]$

[^2]
Type-examination tested safety valves

The functionality of these valves corresponds to that of the standard series (see page 3). Valves of type DBD..1X/..E are, however, type-examination tested pressure relief valves according to the Pressure Equipment Directive 2014/68/EU and intended for use as safety valves.

At the factory, the response pressure is set to a fixed maximum value using the adjustment type. Afterwards, the safety valve is sealed and/or secured using a safety cap which cannot be disassembled in non-destructive manner.

The safety valves are available with graded response pressures (in 5 bar steps). The valve version provided with a safety cap can no longer be adjusted. With valve versions equipped with rotary knob or hand wheel, the valve spring can be unloaded by the user and a response pressure lower than the factory setting can be set without the need of removing the lead seal.

Ordering code: Type-examination tested safety valves type DBD ${ }^{1)}$

NG	Type designation	Component marking
6	DBDS 6K1X/ $\square \mathrm{E}$	$\text { TÜV.SV. } \square \text {-849.5.F. }{ }_{\mathrm{G}}^{\alpha_{\mathrm{w}}}$
	DBDH 6K1X/ $\square \mathrm{E}$	
	DBDS 6G1X/ $\square \mathrm{E}$	
	DBDH 6G1X/ $\square \mathrm{E}$	
	DBDS 6P1X/ $\square \mathrm{E}$	
	DBDH 6P1X/ $\square \mathrm{E}$	
10	DBDS 10K1X/ $\square \mathrm{E}$	$\begin{aligned} & \text { TÜV.SV. } \square \text {-850.6.F. }{ }_{G}^{\alpha_{w}} \text {.p. } \\ & \text { TÜV.SV. } \square-390.4,5 . \text { F.30.p. 2) } \end{aligned}$
	DBDH 10K1X/ $\square \mathrm{E}$	
	DBDS 10G1X/ $\square \mathrm{E}$	
	DBDH 10G1X/ \square E	
	DBDS 10P1X/ $\square \mathrm{E}$	
	DBDH 10P1X/ $\square \mathrm{E}$	

NG	Type designation	Component marking
20	DBDS 20K1X/ $\square \mathrm{E}$	TÜV.SV. \square-361.10.F. $\alpha_{\text {w }}$.p.
	DBDH 20K1X/ $\square \mathrm{E}$	
	DBDS 20G1X/ $\square \mathrm{E}$	
	DBDH 20G1X/ $\square \mathrm{E}$	
	DBDS 20P1X/ $\square \mathrm{E}$	
	DBDH 20P1X/ $\square \mathrm{E}$	
30	DBDS 30K1X/ $\square \mathrm{E}$	TÜV.SV. \square-362.15.F. $\alpha_{\text {w }}$.p.
	DBDH 30K1X/ $\square \mathrm{E}$	
	DBDS 30G1X/ $\square \mathrm{E}$	
	DBDH 30G1X/ $\square \mathrm{E}$	
	DBDS 30P1X/ $\square \mathrm{E}$	
	DBDH 30P1X/ $\square \mathrm{E}$	

\square Information is entered at the factory

Deviating technical data: Type-examination tested safety valves type DBD 1)

general		
Ambient temperature range	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$-10 $\ldots+80[+14 \ldots+176]$	
hydraulic		
Set response pressure	bar [psi]	See last figure of the component marking page 11
Maximum counter pressure in the discharge line	bar [psi]	See characteristic curves page $15 \ldots 19$
Maximum flow	1/min [US gpm]	The last but one figure of the component marking attached at the safety valve is always binding, see page 11. For valve types which have a variable maximum flow depending on the response pressure, the discharge coefficient is specified at this place (see page 14).
Hydraulic fluid		Hydraulic fluids according to DIN 51524: Hydraulic oils HL and HLP are suitable for safety valves with NBR or FKM seals.
Hydraulic fluid temperature range	${ }^{\circ} \mathrm{C}$ [$\left.{ }^{\circ} \mathrm{F}\right]$	$-10 \ldots+60[+14 \ldots+140]$
Viscosity range	$\mathrm{mm}^{2} / \mathrm{s}$ [SUS]	$12 . .230$ [55 ... 1066]

1) Component series 1 X , according to Pressure Equipment Directive 2014/68/EU (For applications outside these parameters, please consult us!)

Dimensions: Sheet cut-out for front panel mounting with type-examination tested safety valves type DBD ${ }^{1)}$ (dimensions in mm [inch])

NG	B1	B2	H1	H2
$\mathbf{6}$	$45[1.77]$	$12.5[0.49]$	$25[0.98]$	$22.5[0.89]$
$\mathbf{1 0}$	$60[2.36]$	$20.5[0.81]$	$40[1.57]$	$20.5[0.81]$
$\mathbf{2 0}$	$70[2.76]$	$24[0.94]$	$50[1.97]$	$24[0.94]$
$\mathbf{3 0}$	$100[3.94]$	$29.5[1.16]$	$60[2.36]$	$29.5[1.16]$
$\mathbf{N G}$	ØD1H13	ØD2H13	R1	
$\mathbf{6}$	$7[0.27]$	$40[1.57]$	$8[0.32]$	
$\mathbf{1 0}$	$9[0.35]$	$44[1.73]$	$8[0.32]$	
$\mathbf{2 0}$	$9[0.35]$	$55[2.17]$	$8[0.32]$	
$\mathbf{3 0}$	$11[0.43]$	$73[2.87]$	$8[0.32]$	

강 Notice:

With valves type DBDH.K..1X/..E, the hand wheel must be removed before the front panel assembly of the screw-in cartridge valve and reassembled afterwards.

1) Component series 1 X according to the Pressure Equipment Directive 2014/68/EU

Deviating dimensions: Cartridge valve as type-examination tested safety valve type DBD ${ }^{1)}$ (dimensions in mm [inch])

$\mathbf{N G}$	$\boldsymbol{\varnothing D 1 1}$	$\boldsymbol{\varnothing D 1 2}$	$\boldsymbol{\varnothing D 1 3}$	$\mathbf{L 1 7}$	$\mathbf{L 1 8}$	$\mathbf{L 1 9}$	$\mathbf{L 2 2}$	$\mathbf{L 2 3}$	$\mathbf{L 2 4}$
$\mathbf{6}$	$34[1.34]$	$60[2.36]$	-	$80[3.15]$	$11[0.43]$	$83[3.26]$	-	-	$64,5[2.54]$
$\mathbf{1 0}$	$38[1.50]$	$60[2.36]$	-	$76,5[3.01]$	$11[0.43]$	$79[3.11]$	-	-	$78,5[3.09]$
$\mathbf{2 0}$	$48[1.89]$	$60[2.36]$	-	$72,5[2.85]$	$11[0.43]$	$77[3.03]$	-	-	$107[4.21]$
$\mathbf{3 0}$	$63[2.48]$	-	$80[3.15]$	$93[3.66]$	-	-	$11[0.43]$	$56[2.21]$	$134[5.28]$

NG	SW1	SW2	SW3	Tightening torques $\boldsymbol{M}_{\mathrm{A}}$ in Nm [ft-lbs] for screw-in cartridge valves ${ }^{3)}$ Pressure rating in bar [psi]			Weight, approx. in kg [lbs]
				up to 200 [2900]	up to 400 [5800]	up to 630 [9150]	
6	32	30	19	50 ± 5 [37 $\pm 3.7]$	80 ± 5 [59 $\pm 4]$	-	0,4 [0.88]
10	36	30	19	$100 \pm 5[74 \pm 3.5]$	150 ± 10 [110 $\pm 3.5]$	200 ± 10 [148 $\pm 7.5]$	0,5 [1.10]
20	46	36	19	$150 \pm 10[111 \pm 7.5]$	300 ± 15 [221 $\pm 11]$	-	1 [2.21]
30	60	46	19	350 ± 20 [258 $\pm 19.5]$	$500 \pm 30[369 \pm 22]$	-	2,2 [4.85]

1.2 Adjustment type "H" - rotary knob (NG6 ... NG20), hand wheel (NG30)
1.4 Adjustment type "S" - hexagon with safety cap

4 Port P, at any place at the circumference or at the front side
6 Type designation
7 Pressure rating (stamped in)
10 Lock nut, tightening torque $\boldsymbol{M}_{\mathrm{A}}=10^{+5} \mathrm{Nm}$ [7.4 $4^{+3.7} \mathrm{ft}$ - lbs]

1) Component series 1 X according to the Pressure Equipment Directive 2014/68/EU
2) Maximum dimension with lowest set response pressure
3) The tightening torques are guidelines with a friction coefficient $\boldsymbol{\mu}_{\text {total }}=0.12$ and when using a manual torque wrench.

Characteristic curves: Type-examination tested safety valves type DBD ${ }^{1)}$

Size 6

Flow in I/min [US gpm] \rightarrow

Size 20

Flow in I/min [US gpm] \rightarrow

Size 10

Size 30

Flow in I/min [US gpm] \rightarrow

Notice:

Value pairs located in the areas of the characteristic curves with gray background can not be realized with the safety valve.
The characteristic curves shown here are only valid for a counter pressure of 0 bar in the discharge line.

1) Component series 1 X according to the Pressure Equipment Directive 2014/68/EU

Safety instructions: Type-examination tested safety valves type DBD 1)

- Before ordering a type-examination tested safety valve, it must be observed that for the desired response pressure \boldsymbol{p}, the maximum admissible flow $\boldsymbol{q}_{\mathrm{Vmax}}$ of the safety valve must be larger than the maximum possible flow of the system/accumulator to be secured. According to the Pressure Equipment Directive 2014/68/EU, the increase in the system pressure due to the flow must not exceed 10% of the set response pressure (see component marking on page 11).
- The maximum admissible flow $\boldsymbol{q}_{\mathrm{Vmax}}$ stated in the component marking must not be exceeded.
- Discharge lines of safety valves must end in a risk-free manner. The accumulation of fluids in the discharge system must not be possible (see data sheet AD2000 A2).

It is imperative to observe the application notes!

- In the plant, the response pressure specified in the component marking is set at a flow of $2 \mathrm{I} / \mathrm{min}$ [0.53 US gpm] .
- The maximum flow stated in the component marking applies for applications without counter pressure in the discharge line (port T).
- By removing the lead seal at the safety valve, the approval according to the Pressure Equipment Directive becomes void!
- Basically, the requirements of the Pressure Equipment Directive and of data sheet AD2000 A2 have to be observed!
- It is recommended to secure type-examination tested safety valves against inadmissible disassembly by means of wiring and sealing with the housing/block (bore available in the adjustment type).

Notice:

The system pressure increases by the counter pressure in the discharge line (port T) due to the increasing flow. (Observe the data sheet AD 2000 A 2, point 6.3!) To ensure that this increase in system pressure caused by the flow does not exceed the value of 10% of the set response pressure, the admissible flow has to be reduced dependent on the counter pressure in the discharge line (port T) (see diagrams on pages $15 \ldots 19$).

1) Component series 1 X according to the Pressure Equipment Directive 2014/68/EU

Characteristic curves: Counter pressure in the discharge line

In principle, the valve should be operated without counter pressure in the discharge line, if possible. In case of counter pressure in the discharge line, the maximum flow possible is reduced. There is a relationship between maximum counter pressure $\boldsymbol{p}_{\mathrm{T}}$ in the discharge line and flow $\boldsymbol{q}_{\mathrm{v}}$, which can be seen from the following characteristic curve. Characteristic curves for intermediate values of the response pressure which are not listed must be determined by means of interpolation.
When the flow approaches zero, the maximum counter pressure \boldsymbol{p}_{T} is in each case 10% of the response pressure. With increasing flow, the maximum counter pressure \boldsymbol{p}_{T} decreases.

Interpolation of intermediate values from the diagram

1. At the axis $\boldsymbol{p}_{\mathrm{T}}$, mark $1 / 10$ of the value of $\boldsymbol{p}_{\mathrm{A}}$.
2. Determine the next lower and the next higher characteristic curve for this point. The point marked at $\boldsymbol{p}_{\text {T }}$ divides the section between lower and higher characteristic curve on the $\boldsymbol{p}_{\text {T }}$ axis with a certain percentage.
3. At the $\boldsymbol{q}_{\mathrm{Vmax}}$ axis, divide the section between next lower and next higher characteristic curve in the same percentage as the section at the \boldsymbol{p}_{T} axis. From the zerocrossing on the $\boldsymbol{q}_{\mathrm{Vmax}}$ axis determined in that way, draw a straight line to the value on the \boldsymbol{p}_{T} axis marked before.
4. Mark the system flow to be secured at the $\boldsymbol{q}_{\mathrm{Vmax}}$ axis.
5. Read off the maximum counter pressure for this value using the line at the $\boldsymbol{p}_{\mathrm{T}}$ axis drawn before.

Characteristic curves: Counter pressure in the discharge line - size 6

Diagram for determining the maximum counter pressure $\boldsymbol{p}_{\boldsymbol{T}}$ in the discharge line at port T of the valve dependent on the flow $\boldsymbol{q}_{V \max }$ for valves DBD. $6 \ldots 1 \mathrm{~K} / \ldots$. with different response pressures $\boldsymbol{p}_{\mathrm{A}}$.

$\boldsymbol{p}_{\mathrm{A}} \quad$ Response pressure in bar
$\boldsymbol{p}_{\mathrm{T}} \quad$ Maximum counter pressure in the discharge line (port T) in bar
$\boldsymbol{q}_{\text {Vmax }}$ Maximum flow in $\mathrm{I} /$ min
\square I Interpolation area \mathbf{I}, for valves with $\boldsymbol{p}_{\mathrm{A}}=30 \ldots 110$ bar and $\boldsymbol{q}_{\mathrm{Vmax}}=14 \ldots 27 \mathrm{I} / \mathrm{min}$
\square II Interpolation area II, for valves with $\boldsymbol{p}_{\mathrm{A}}=115 \ldots 400$ bar and $\boldsymbol{q}_{\mathrm{V} \text { max }}=52 \mathrm{I} / \mathrm{min}$

Determination of the maximum counter pressure

Example 1 (with already existing characteristic curve):
Flow of the system / accumulator to be secured: $\boldsymbol{q}_{\mathrm{Vmax}}=15 \mathrm{I} / \mathrm{min}$ Safety valve set to: $\boldsymbol{p}_{\mathrm{A}}=315$ bar.
Read off the maximum counter pressure $\boldsymbol{p}_{\mathrm{T}}$ of approx. 22,5 bar from the diagram (see arrows, characteristic curve 7).

Example 2 (with interpolated characteristic curve):
Flow of the system / accumulator to be secured: $\boldsymbol{q}_{\mathrm{V} \max }=15 \mathrm{I} / \mathrm{min}$ Safety valve set to: $\boldsymbol{p}_{\mathrm{A}}=80$ bar.
Value to be marked at the axis referred to as $\boldsymbol{p}_{\mathrm{T}}$: $1 / 10 \times 80$ bar $=8$ bar.
Read off the maximum counter pressure \boldsymbol{p}_{T} of approx. 3 bar from the diagram (see arrows, dashed characteristic curve).

Characteristic curves: Counter pressure in the discharge line - size 10
Diagram for determining the maximum admissible counter pressure \boldsymbol{p}_{T} in the discharge line at port T of the valve dependent on the flow $\boldsymbol{q}_{\mathrm{Vmax}}$ for valves DBDH $\mathbf{1 0} \ldots 1 \mathrm{X} / \ldots$ E with different response pressures $\boldsymbol{p}_{\mathrm{A}}$.

$\boldsymbol{p}_{\mathrm{A}} \quad$ Response pressure in bar
$\boldsymbol{p}_{\mathrm{T}} \quad$ Maximum counter pressure in the discharge line (port T) in bar
$\boldsymbol{q}_{\mathrm{Vmax}}$ Maximum flow in I/min
Interpolation areas

Characteristic curves: Counter pressure in the discharge line - size 20
Diagram for determining the maximum admissible counter pressure \boldsymbol{p}_{T} in the discharge line at port T of the valve dependent on the flow $\boldsymbol{q}_{\mathrm{Vmax}}$ for valves DBDH $\mathbf{2 0} \ldots 1 \mathrm{X} / \ldots$. with different response pressures $\boldsymbol{p}_{\mathrm{A}}$.

$\boldsymbol{p}_{\mathrm{A}} \quad$ Response pressure in bar
$\boldsymbol{p}_{\boldsymbol{T}} \quad$ Maximum counter pressure in the discharge line (port T) in bar
$\boldsymbol{q}_{\mathrm{V} \text { max }}$ Maximum flow in $\mathrm{I} /$ min

Characteristic curves	Response pressure $\boldsymbol{p}_{\mathrm{A}}$ in bar [psi]
$\mathbf{1}$	$30[435]$
$\mathbf{2}$	$60[870]$
$\mathbf{3}$	$110[1595]$
$\mathbf{4}$	$170[2465]$
$\mathbf{5}$	$210[3046]$
$\mathbf{6}$	$315[4568]$
$\mathbf{7}$	$320[4641]$
$\mathbf{8}$	$400[5800]$

Characteristic curves for intermediate values can be generated by interpolation. Further explanations can be found on page 15.

Characteristic curves: Counter pressure in the discharge line - size 30
Diagram for determining the maximum admissible counter pressure $\boldsymbol{p}_{\mathrm{T}}$ in the discharge line at port T of the valve dependent on the flow $\boldsymbol{q}_{V \max }$ for valves DBDH $\mathbf{3 0} \ldots 1 \mathrm{X} / \ldots$. with different response pressures $\boldsymbol{p}_{\mathrm{A}}$.

$\boldsymbol{p}_{\mathrm{A}} \quad$ Response pressure in bar
$\boldsymbol{p}_{\boldsymbol{T}} \quad$ Maximum counter pressure in the discharge line (port T) in bar
$\boldsymbol{q}_{\mathrm{V} \text { max }}$ Maximum flow in $\mathrm{I} /$ min

Characteristic curves	Response pressure $\boldsymbol{p}_{\mathrm{A}}$ in bar [psi]
$\mathbf{1}$	$30[435]$
$\mathbf{2}$	$60[870]$
$\mathbf{3}$	$110[1595]$
$\mathbf{4}$	$170[2465]$
$\mathbf{5}$	$210[3046]$
$\mathbf{6}$	$315[4568]$

Characteristic curves for intermediate values can be generated by interpolation. Further explanations can be found on page 15.

[^0]: 1) The tightening torques are guidelines, referring to the maximum operating pressure and when using a manual torque wrench
 (tolerance $\pm 10 \%$).
[^1]: 1) As replacement, you can also use specified screws according to DIN 912.
 2) For tightening, use a manual torque wrench with a tolerance s10\%.
[^2]: [居 Notice:

 The specified subplates are not approved for use with typeexamination tested safety valve according to Pressure Equipment Directive 2014/68/EU!

